skip to main content


Search for: All records

Creators/Authors contains: "Lim, Gary N."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Here, we developed a microfluidic electrochemical flow cell for fast-scan cyclic voltammetry which is capable of rapid on-chip dilution for efficient and cost-effective electrode calibration. Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes is a robust electroanalytical technique used to measure subsecond changes in neurotransmitter concentration over time.Traditional methods of electrode calibration for FSCV require several milliliters of a standard. Additionally, generating calibration curves can be time-consuming because separate solutions must be prepared for each concentration. Microfluidic electrochemical flow cells have been developed in the past; however, they often require incorporating the electrode in the device, making it difficult to remove for testing in biological tissues. Likewise, current microfluidic electrochemical flow cells are not capable of rapid on-chip dilution to eliminate the requirement of making multiple solutions. We designed a T-channel device, with microchannel dimensions of 100 μm × 50 μm, that delivered a standard to a 2-mm-diameter open electrode sampling well. A waste channel with the same dimensions was designed perpendicular to the well to flush and remove the standard. The dimensions of the T-microchannels and flow rates were chosen to facilitate complete mixing in the delivery channel prior to reaching the electrode. The degree of mixing was computationally modeled using COMSOL and was quantitatively assessed in the device using both colored dyes and electrochemical detection. On-chip electrode calibration for dopamine with FSCV was not significantly different than the traditional calibration method demonstrating its utility for FSCV calibration. Overall, this device improves the efficiency and ease of electrode calibration. 
    more » « less
  2. Abstract

    A high potential donor–acceptor dyad composed of zinc porphyrin bearing threemeso‐pentafluorophenyl substituents covalently linked to C60, as a novel dyad capable of generating charge‐separated states of high energy (potential) has been developed. The calculated energy of the charge‐separated state was found to be 1.70 eV, the highest reported for a covalently linked porphyrin–fullerene dyad. Intramolecular photoinduced electron transfer leading to charge‐separated states of appreciable lifetimes in polar and nonpolar solvents has been established from studies involving femto‐ to nanosecond transient absorption techniques. The high energy stored in the form of charge‐separated states along with its persistence of about 50–60 ns makes this dyad a potential electron‐transporting catalyst to carry out energy‐demanding photochemical reactions. This type of high‐energy harvesting dyad is expected to open new research in the areas of artificial photosynthesis especially producing energy (potential) demanding light‐to‐fuel products.

     
    more » « less